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CS 188: Artificial Intelligence 
 

Review of Utility, MDPs, RL, 
Bayes’ nets 

 
DISCLAIMER: It is insufficient to simply study these slides, 
they are merely meant as a quick refresher of the high-level 
ideas covered.  You need to study all materials covered in 

lecture, section, assignments and projects ! 

 
Pieter Abbeel – UC Berkeley 

Many slides adapted from Dan Klein 

Preferences 
§  An agent must have 

preferences among: 
§  Prizes: A, B, etc. 
§  Lotteries: situations with 

uncertain prizes 

§  Notation: 
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Rational Preferences 
§  Preferences of a rational agent must obey constraints. 

§  The axioms of rationality: 

§  Theorem: Rational preferences imply behavior 
describable as maximization of expected utility 3 

MEU Principle 
§  Theorem: 

§  [Ramsey, 1931; von Neumann & Morgenstern, 1944] 
§  Given any preferences satisfying these constraints, there exists 

a real-valued function U such that: 

§  Maximum expected utility (MEU) principle: 
§  Choose the action that maximizes expected utility 
§  Note: an agent can be entirely rational (consistent with MEU) 

without ever representing or manipulating utilities and 
probabilities 

§  E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner 
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Recap MDPs and RL 
§  Markov Decision Processes (MDPs) 

§  Formalism  (S, A, T, R, gamma)  
§  Solution: policy pi which describes action for each state 
§  Value Iteration   (vs. Expectimax --- VI more efficient through dynamic 

programming)  
§  Policy Evaluation and Policy Iteration 

§  Reinforcement Learning (don’t know T and R) 
§  Model-based Learning: estimate T and R first 
§  Model-free Learning: learn without estimating T or R 

§  Direct Evaluation  [performs policy evaluation] 
§  Temporal Difference Learning [performs policy evaluation] 
§  Q-Learning [learns optimal state-action value function Q*] 
§  Policy Search [learns optimal policy from subset of all policies] 

§  Exploration 

§  Function approximation --- generalization 
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Markov Decision Processes 
§  An MDP is defined by: 

§  A set of states s ∈ S 
§  A set of actions a ∈ A 
§  A transition function T(s,a,s’) 

§  Prob that a from s leads to s’ 
§  i.e., P(s’ | s,a) 
§  Also called the model 

§  A reward function R(s, a, s’)  
§  Sometimes just R(s) or R(s’) 

§  A start state (or distribution) 
§  Maybe a terminal state 

§  MDPs are a family of non-
deterministic search problems 
§  Reinforcement learning: MDPs 

where we don’t know the 
transition or reward functions 6 
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What is Markov about MDPs? 
§  “Markov” generally means that given the present state, 

the future and the past are independent 

§  For Markov decision processes, “Markov” means: 

§  Can make this happen by proper choice of state space 
 

Value Iteration 
§  Idea: 

§  Vi
*(s) : the expected discounted sum of rewards accumulated when 

starting from state s and acting optimally for a horizon of i time steps. 
§  Value iteration: 

§  Start with V0
*(s) = 0, which we know is right (why?) 

§  Given Vi
*, calculate the values for all states for horizon i+1: 

§  This is called a value update or Bellman update 
§  Repeat until convergence 

§  Theorem: will converge to unique optimal values 
§  Basic idea: approximations get refined towards optimal values 
§  Policy may converge long before values do 
§  At convergence, we have found the optimal value function V* for the 

discounted infinite horizon problem, which satisfies the Bellman 
equations: 8 

Complete Procedure 

§  1. Run value iteration (off-line) 
§  This results in finding V* 

§  2. Agent acts.  At time t the agent is in state st 
and takes the action at: 
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Policy Iteration 
§  Policy evaluation: with fixed current policy π, find values 

with simplified Bellman updates: 
§  Iterate for i = 0, 1, 2, … until values converge 

§  Policy improvement: with fixed utilities, find the best 
action according to one-step look-ahead 

§  Will converge (policy will not change) and resulting policy 
optimal 10 

Sample-Based Policy Evaluation? 

§  Who needs T and R?  Approximate the 
expectation with samples (drawn from T!) 
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Almost!  (i) Will only be in 
state s once and then land 
in s’ hence have only one 
sample à have to keep all 
samples around? (ii) Where 
do we get value for s’? 

Temporal-Difference Learning 
§  Big idea: learn from every experience! 

§  Update V(s) each time we experience (s,a,s’,r) 
§  Likely s’ will contribute updates more often 
 

§  Temporal difference learning 
§  Policy still fixed! 
§  Move values toward value of whatever 

successor occurs: running average! 
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Sample of V(s): 

Update to V(s): 

Same update: 
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Exponential Moving Average 
§  Exponential moving average  

§  Makes recent samples more important 

§  Forgets about the past (distant past values were wrong anyway) 
§  Easy to compute from the running average  

 

§  Decreasing learning rate can give converging averages 
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Detour: Q-Value Iteration 
§  Value iteration: find successive approx optimal values 

§  Start with V0(s) = 0, which we know is right (why?) 
§  Given Vi, calculate the values for all states for depth i+1: 

§  But Q-values are more useful! 
§  Start with Q0(s,a) = 0, which we know is right (why?) 
§  Given Qi, calculate the q-values for all q-states for depth i+1: 
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Q-Learning 
§  Learn Q*(s,a) values 

§  Receive a sample (s,a,s’,r) 
§  Consider your new sample estimate: 

§  Incorporate the new estimate into a running average: 

§  Amazing result: Q-learning converges to optimal policy 
§  If you explore enough 
§  If you make the learning rate small enough but not decrease it 

too quickly! 

§  Neat property: off-policy learning 
§  learn optimal policy without following it 
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Exploration Functions 
§  Simplest: random actions (ε greedy) 

§  Every time step, flip a coin 
§  With probability ε, act randomly 
§  With probability 1-ε, act according to current policy 
§  Problems with random actions? 

§  You do explore the space, but keep thrashing around once learning 
is done 

§  One solution: lower ε over time 

§  Exploration functions 
§  Explore areas whose badness is not (yet) established 
§  Take a value estimate and a count, and returns an optimistic 

utility, e.g.                                    (exact form not important) 

now becomes: 
Qi+1(s, a) ← (1− α)Qi(s, a) + α

�
R(s, a, s�) + γmax

a�
Qi(s

�, a�)
�

Qi+1(s, a) ← (1− α)Qi(s, a) + α
�
R(s, a, s�) + γmax

a�
f(Qi(s

�, a�), N(s�, a�))
�

Feature-Based Representations 
§  Solution: describe a state using 

a vector of features 
§  Features are functions from states 

to real numbers (often 0/1) that 
capture important properties of the 
state 

§  Example features: 
§  Distance to closest ghost 
§  Distance to closest dot 
§  Number of ghosts 
§  1 / (dist to dot)2 

§  Is Pacman in a tunnel? (0/1) 
§  …… etc. 

§  Can also describe a q-state (s, a) 
with features (e.g. action moves 
closer to food) 
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Linear Feature Functions 

§  Using a feature representation, we can write a 
q function (or value function) for any state 
using a few weights: 

§  Advantage: our experience is summed up in a 
few powerful numbers 

§  Disadvantage: states may share features but 
be very different in value! 
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Policy Search 
§  Problem: often the feature-based policies that work well 

aren’t the ones that approximate V / Q best 
§  Solution: learn the policy that maximizes rewards rather 

than the value that predicts rewards 
§  This is the idea behind policy search, such as what 

controlled the upside-down helicopter 
§  Simplest policy search: 

§  Start with an initial linear value function or Q-function 
§  Nudge each feature weight up and down and see if your policy is 

better than before 

§  Problems: 
§  How do we tell the policy got better? 
§  Need to run many sample episodes! 
§  If there are a lot of features, this can be impractical 
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