
1

CS 188: Artificial Intelligence

Review of Utility, MDPs, RL,
Bayes’ nets

DISCLAIMER: It is insufficient to simply study these slides,
they are merely meant as a quick refresher of the high-level
ideas covered. You need to study all materials covered in

lecture, section, assignments and projects !

Pieter Abbeel – UC Berkeley

Many slides adapted from Dan Klein

Preferences
§  An agent must have

preferences among:
§  Prizes: A, B, etc.
§  Lotteries: situations with

uncertain prizes

§  Notation:

2

Rational Preferences
§  Preferences of a rational agent must obey constraints.

§  The axioms of rationality:

§  Theorem: Rational preferences imply behavior
describable as maximization of expected utility 3

MEU Principle
§  Theorem:

§  [Ramsey, 1931; von Neumann & Morgenstern, 1944]
§  Given any preferences satisfying these constraints, there exists

a real-valued function U such that:

§  Maximum expected utility (MEU) principle:
§  Choose the action that maximizes expected utility
§  Note: an agent can be entirely rational (consistent with MEU)

without ever representing or manipulating utilities and
probabilities

§  E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner
4

Recap MDPs and RL
§  Markov Decision Processes (MDPs)

§  Formalism (S, A, T, R, gamma)
§  Solution: policy pi which describes action for each state
§  Value Iteration (vs. Expectimax --- VI more efficient through dynamic

programming)
§  Policy Evaluation and Policy Iteration

§  Reinforcement Learning (don’t know T and R)
§  Model-based Learning: estimate T and R first
§  Model-free Learning: learn without estimating T or R

§  Direct Evaluation [performs policy evaluation]
§  Temporal Difference Learning [performs policy evaluation]
§  Q-Learning [learns optimal state-action value function Q*]
§  Policy Search [learns optimal policy from subset of all policies]

§  Exploration

§  Function approximation --- generalization
5

Markov Decision Processes
§  An MDP is defined by:

§  A set of states s ∈ S
§  A set of actions a ∈ A
§  A transition function T(s,a,s’)

§  Prob that a from s leads to s’
§  i.e., P(s’ | s,a)
§  Also called the model

§  A reward function R(s, a, s’)
§  Sometimes just R(s) or R(s’)

§  A start state (or distribution)
§  Maybe a terminal state

§  MDPs are a family of non-
deterministic search problems
§  Reinforcement learning: MDPs

where we don’t know the
transition or reward functions 6

2

What is Markov about MDPs?
§  “Markov” generally means that given the present state,

the future and the past are independent

§  For Markov decision processes, “Markov” means:

§  Can make this happen by proper choice of state space

Value Iteration
§  Idea:

§  Vi
*(s) : the expected discounted sum of rewards accumulated when

starting from state s and acting optimally for a horizon of i time steps.
§  Value iteration:

§  Start with V0
*(s) = 0, which we know is right (why?)

§  Given Vi
*, calculate the values for all states for horizon i+1:

§  This is called a value update or Bellman update
§  Repeat until convergence

§  Theorem: will converge to unique optimal values
§  Basic idea: approximations get refined towards optimal values
§  Policy may converge long before values do
§  At convergence, we have found the optimal value function V* for the

discounted infinite horizon problem, which satisfies the Bellman
equations: 8

Complete Procedure

§  1. Run value iteration (off-line)
§  This results in finding V*

§  2. Agent acts. At time t the agent is in state st
and takes the action at:

9

Policy Iteration
§  Policy evaluation: with fixed current policy π, find values

with simplified Bellman updates:
§  Iterate for i = 0, 1, 2, … until values converge

§  Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

§  Will converge (policy will not change) and resulting policy
optimal 10

Sample-Based Policy Evaluation?

§  Who needs T and R? Approximate the
expectation with samples (drawn from T!)

11

π(s)

s

s, π(s)

s1’ s2’ s3’
s, π(s),s’

s
’

Almost! (i) Will only be in
state s once and then land
in s’ hence have only one
sample à have to keep all
samples around? (ii) Where
do we get value for s’?

Temporal-Difference Learning
§  Big idea: learn from every experience!

§  Update V(s) each time we experience (s,a,s’,r)
§  Likely s’ will contribute updates more often

§  Temporal difference learning
§  Policy still fixed!
§  Move values toward value of whatever

successor occurs: running average!

12

π(s)

s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:

3

Exponential Moving Average
§  Exponential moving average

§  Makes recent samples more important

§  Forgets about the past (distant past values were wrong anyway)
§  Easy to compute from the running average

§  Decreasing learning rate can give converging averages

13

Detour: Q-Value Iteration
§  Value iteration: find successive approx optimal values

§  Start with V0(s) = 0, which we know is right (why?)
§  Given Vi, calculate the values for all states for depth i+1:

§  But Q-values are more useful!
§  Start with Q0(s,a) = 0, which we know is right (why?)
§  Given Qi, calculate the q-values for all q-states for depth i+1:

14

Q-Learning
§  Learn Q*(s,a) values

§  Receive a sample (s,a,s’,r)
§  Consider your new sample estimate:

§  Incorporate the new estimate into a running average:

§  Amazing result: Q-learning converges to optimal policy
§  If you explore enough
§  If you make the learning rate small enough but not decrease it

too quickly!

§  Neat property: off-policy learning
§  learn optimal policy without following it

15

Exploration Functions
§  Simplest: random actions (ε greedy)

§  Every time step, flip a coin
§  With probability ε, act randomly
§  With probability 1-ε, act according to current policy
§  Problems with random actions?

§  You do explore the space, but keep thrashing around once learning
is done

§  One solution: lower ε over time

§  Exploration functions
§  Explore areas whose badness is not (yet) established
§  Take a value estimate and a count, and returns an optimistic

utility, e.g. (exact form not important)

now becomes:
Qi+1(s, a) ← (1− α)Qi(s, a) + α

�
R(s, a, s�) + γmax

a�
Qi(s

�, a�)
�

Qi+1(s, a) ← (1− α)Qi(s, a) + α
�
R(s, a, s�) + γmax

a�
f(Qi(s

�, a�), N(s�, a�))
�

Feature-Based Representations
§  Solution: describe a state using

a vector of features
§  Features are functions from states

to real numbers (often 0/1) that
capture important properties of the
state

§  Example features:
§  Distance to closest ghost
§  Distance to closest dot
§  Number of ghosts
§  1 / (dist to dot)2

§  Is Pacman in a tunnel? (0/1)
§  …… etc.

§  Can also describe a q-state (s, a)
with features (e.g. action moves
closer to food)

17

Linear Feature Functions

§  Using a feature representation, we can write a
q function (or value function) for any state
using a few weights:

§  Advantage: our experience is summed up in a
few powerful numbers

§  Disadvantage: states may share features but
be very different in value!

18

4

0 2 4 6 8 10 12 14 16 18 20 -15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

19

Policy Search
§  Problem: often the feature-based policies that work well

aren’t the ones that approximate V / Q best
§  Solution: learn the policy that maximizes rewards rather

than the value that predicts rewards
§  This is the idea behind policy search, such as what

controlled the upside-down helicopter
§  Simplest policy search:

§  Start with an initial linear value function or Q-function
§  Nudge each feature weight up and down and see if your policy is

better than before

§  Problems:
§  How do we tell the policy got better?
§  Need to run many sample episodes!
§  If there are a lot of features, this can be impractical

20

